Корреляционно-регрессионный анализ.

Анализ коэффициентов парной корреляции говорит о наличии интенсивной связи Y с Х5 (0.9834), средней с Х4 (-0.5315) -знак минус указывает на обратную зависимость- и Х3 ( -0.4266), слабой с Х2 (-0.1890) и Х1 (0.1176). Значит в модель стоит включить факторы Х3, Х4,Х5.

Следующим этапом идет проверка на мультиколлениарность,существует несколько способов данной проверки.

Способ 1.

При проверке на мультиколлениарность (коэффициенты частной корреляции и t-статистика) видно, что существует взаимосвязь между:

x1

x2

x3

x4

x2

x1

x1

x4

x4

x2

следовательно в модель включается Х5 и Х4, т.к. коэффициент парной корреляции Y-X4 (-0.5315) больше, чем коэффициенты парной корреляции Y-X1 (0.1170) и Y-X3 (-0.4266) и Y-Х2(-0.1890).

Способ 2.

Этот метод основан на анализе распределения корреляционной матрицы. Идея метода заключается в том что вводятся некоторые критерии на основе которого можно проверить о значимости отклонения корреляционной матрицы от ортогональной, для этого вводится величина:

Х^2= N-1-1/6(2*n+5)*ln|R|

по расчетам ХИ квадрат равно 80.469 больше табличного, значит между переменными существует мультиколлениарность. Для определения степени мультиколлениарности вводим величину:

W=(Cii-1)-(N-n)/(n-1)

где Сii - диагональный элемент матрицы обратной корреляционной.

Wii

Wii

f-критерий

W11

3.622

0.0139

W22

1.93

0.12648

W33

6.18

0.00081

W44

2.181

0.08999

W55

6.225

0.00077

Данная таблица указывает, что наиболее коллениарна Х2, затем Х4 и можно сказать что Х3 и Х5 вовсе не коллениарны. Следовательно в модель лучше включить Х3 и Х5, но проведенный последующий регрессионный анализ указывает что лучше включать в модель Х2 и Х3, т.е. производство ликеро-водочных изделий (Y) зависит от валового сбора сахарной свеклы (X2) и потребления пива (X3).

Перейти на страницу: 1 2

Другие материалы