Направления управленческого анализа

Вторая группа методов продолжает использование в расчетах прогнозных значений F . Один из самых простых методов этой группы - расчет срока окупаемости инвестиции. Последовательность действий аналитика в этом случае такова:

- рассчитывается величина требуемых инвестиций , IC ;

- оценивается прибыль ( денежные поступления ) по годам , Fi ;

- выбирается тот вариант , кумулятивная прибыль по которому за меньшее число лет окупит сделанные инвестиции .

б) Число альтернативных вариантов больше двух. n > 2

Процедурная сторона анализа существенно усложняется из-за множественности вариантов , техника “ прямого счета “ в этом случае практически не применима . Наиболее удобный вычислительный аппарат - методы оптимального программирования ( в данном случае этот термин означает “ планирование ” ) . Этих методов много ( линейное , нелинейное, динамическое и пр. ), но на практике в экономических исследованиях относительную известность получило лишь линейное программирование. В частности рассмотрим транспортную задачу как пример выбора оптимального варианта из набора альтернативных . Суть задачи состоит в следующем .

Имеется n пунктов производства некоторой продукции ( а1,а2, .,аn ) и k пунктов ее потребления ( b1,b2, ,bk ), где ai - объем выпуска продукции i - го пункта производства , bj - объем потребления j - го пункта потребления . Рассматривается наиболее простая , так называемая “закрытая задача ” , когда суммарные объемы производства и потребления равны . Пусть cij - затраты на перевозку единицы продукции . Требуется найти наиболее рациональную схему прикрепления поставщиков к потребителям , минимизирующую суммарные затраты по транспортировке продукции . Очевидно , что число альтернативных вариантов здесь может быть очень большим , что исключает применение метода “ прямого счета ”

2 Анализ и принятие управленческих решений в условиях риска.

Эта ситуация встречается на практике наиболее часто. Здесь пользуются вероятностным подходом, предполагающим прогнозирование возможных исходов и присвоение им вероятностей. При этом пользуются:

а) известными, типовыми ситуациями (типа - вероятность появления герба при бросании монеты равна 0.5 ) ;

б) предыдущими распределениями вероятностей (например, из выборочных обследований или статистики предшествующих периодов известна вероятность появления бракованной детали ) ;

в) субъективными оценками ,сделанными аналитиком самостоятельно либо с привлечением группы экспертов .

Последовательность действий аналитика в этом случае такова:

- прогнозируются возможные исходы Ak , k = 1 ,2 , ., n ;

- каждому исходу присваивается соответствующая вероятность pk , причем

- Е рк = 1

- выбирается критерий (например максимизация математического ожидания прибыли );

- выбирается вариант, удовлетворяющий выбранному критерию.

3.Анализ и принятие управленческих решений в условиях неопределенности.

Эта ситуация разработана в теории, однако на практике формализованные алгоритмы анализа применяются достаточно редко. Основная трудность здесь состоит в том, что невозможно оценить вероятности исходов. Основной критерий - максимизация прибыли - здесь не срабатывает, поэтому применяют другие критерии:

- максимин (максимизация минимальной прибыли)

- минимакс (минимизация максимальных потерь)

- максимакс (максимизация максимальной прибыли) и др.

4.Анализ и принятие управленческих решений в условиях конфликта.

Наиболее сложный и мало разработанный с практической точки зрения анализ. Подобные ситуации рассматриваются в теории игр. Безусловно на практике эта и предыдущая ситуации встречаются достаточно часто. В таких случаях их пытаются свести к одной из первых двух ситуаций либо используют для принятия решения неформализованные методы.

Оценки, полученные в результате применения формализованных методов , являются лишь базой для принятия окончательного решения ; при этом могут приниматься во внимание дополнительные критерии , в том числе и неформального характера .

Перейти на страницу: 1 2 3 4 

Другие материалы